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Magnetic liquids are finding wider and wider use in various fields of technology 
[I]. Such liquids can be used as heat exchange fluids in equipment which gener- 
ates a magnetic field under conditions of weightlessness [2] and in a number of 
other applications. The efficiency of heat exchange equipment is determined to a 
significant degree by the temperature of the magnetic liquid. In connection with 
this fact, it is of interest to examine nonisothermal flows at a temperature near 
the Curie point, where the dependence of volume magnetization M on temperature is 
expressed most clearly. In this case the character of the liquid flow will be af- 
fected not only by the dependence of saturation volume magnetization on tempera- 
ture, but also by temperature inhomogeneity caused by development of external heat 
sources and sinks produced by the magnetocaloric effect. We note that although 
this is a Weak effect [3], the temperature redistribution over channel section 
which it produces may be significant. With a high gradient in the external mag- 
netic field H even a small change in temperature can significantly change the force 
acting on a magnetic liquid element. The unique features of magnetic liquid flow 
at a temperature close to the Curie point can be investigated by simultaneously 
solving the equations of motion and thermal conductivity. 

In the Rosensweig--Neuringerapproximation [4] the system of equations describing an in- 
compressible nonconductive saturated magnetic liquid has the form 

P -bT- + (vV) v = - -  Vp + ~Av + ~oMVH; ( 1 

Or OM vVH],  

d i v v  = 0, M = M(T), 

where  p i s  t h e  d e n s i t y ;  v i s  t h e  v e l o c i t y  v e c t o r ,  t ,  t i m e ;  p ,  p r e s s u r e ;  ~ ,  d y n a m i c  v i s c o s i t y ;  
~0 ,  m a g n e t i c  p e r m i t t i v i t y  of  a vacuum;  c ,  s p e c i f i c  h e a t ;  T, t e m p e r a t u r e ;  ;~, t h e r m a l  c o n d u c -  
t i v i t y .  Below we w i l l  a s sume  t h a t  M = A(T c -- T ) ,  where  A = - - (~M/~T)p ,  H i s  t h e  p y r o m a g n e t i e  
c o e f f i c i e n t  and  T c i s  t h e  C u r i e  t e m p e r a t u r e  [ 4 ,  5 ] .  S i n c e  t h e  c h a n g e  i n  t e m p e r a t u r e  i s  s m a l l  
i n  c o m p a r i s o n  to  t h e  a b s o l u t e  t e m p e r a t u r e ,  i n  t h e  l a s t  t e r m  of  Eq.  (2) w h i c h  c o n s i d e r s  t h e  
m a g n e t o c a l o r i e  e f f e c t ,  we may a s s u m e  T = e o n s t .  

W i t h i n  a p l a n a r  c h a n n e l  of  w i d t h  2L l e t  a m a g n e t i c  l i q u i d  move u n d e r  t h e  i n f l u e n c e  of  
g r a d i e n t s  i n  e x t e r n a l  m a g n e t i c  f i e l d  G = ~H/3x = c o n s t  a nd  p r e s s u r e  ? p / 3 x  = c o n s t .  The c h a n -  
n e l  w a l l  t e m p e r a t u r e  To i s  m a i n t a i n e d  c o n s t a n t  and  c l o s e  t o  t h e  C u r i e  p o i n t .  We c h o o s e  a s  
c h a r a c t e r i s t i c  v ~ l u e s  f o r  l e n g t h  L,  f o r  t i m e  L 2 p / n ,  f o r  t e m p e r a t u r e  (Tc -- T 0 ) ,  and  f o r  v e -  
l o c i t y  (T c -- T 0 ) / X / ( n T 0 ) .  Then  t h e  s y s t e m  ( 1 ) ,  (2)  d e s c r i b i n g  o n e - d i m e n s i o n a l  f l o w  of  t h e  
m a g n e t i c  I / q u i d  i n  t h e  p l a n a r  c h a n n e l  c a n  be  w r i t t e n  i n  d i m e n s i o n l e s s  fo rm 

Ou/Ot = 0 2 u / O g  2 - -  2k20 + q; (3)  

Pr O0/Ot = O~'O/ag ~ + 2k2u, (4)  

where  0 = ( T -  T o ) / ( T  c - - T o ) ;  2k 2 = poAGL2 TCTo/~ (k  > 0 ) ;  q = 2k 2 - - P ;  P = [ L 2 / ( T c -  To) ]  • 
r Pr = qc/~ is the Prandtl number; u- x is the projection of the velocity vec- 
tor. The y axis is directed perpendicular to the channel walls and the x axis, along the 
channel axis. 
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We will consider the developing flow of a magnetic liquid. At time t < 0 let q = 0, 
i.e., magnetic pressure compensates the hydrodynamic pressure head in the channel and the 
liquid is at rest (magnetic stoppage). At the initial moment (t = 0) an instantaneous change 
occurs in pressure gradient, so that at t ~ 0 the quantity q will have a constant nonzero 
value. The corresponding initial and boundary conditions have the form 

u(g, O) =: O, O(g, O) = 0 ,  u(+__l, t) = 0 ,  0 ( •  t) = 0 .  (5 )  

Using a Laplace transform with respect to the variable t, we reduce the solution of Eqs. (3)- 
(5) to solution of a system of ordinary differential equations with boundary conditions [6]. 

Then performing the inverse transform, we obtain 

sh k sin k ch (ky) cos (ky) - -  ch k cos k sh (ky) sin (ky) q 
u (g, t) = 2k ~ s h~ ~ -I- cos~ k 

+ 2q ~ e x p (  
j=o 

(6) 

where n = ~(j + 0.5); ~ = /n~(Pr -- I) 2 -- 16k~Pr. An expression for e(y, t) can be obtained 

from Eqo (3). Since at the Curie temperature the liquid loses its ferromagnetic properties 
the assumed dependence M = M(T) is not followed at T > Tc; consequently the solution obtained, 
Eq. (6), is valid only for 0(y, t) ~ I, which in turn imposes limitations on the parameters 

Pr, k, and q. 

Velocity profiles calculated with Eq. (6) for Pr = 5, q = I are shown in Fig. I, where 
curves I-3 correspond to k = 0.5~, with 4-6 representing k = 0.75v. Curves I, 4 are steady- 
state velocity profiles in the channel, while 2, 3, 5, 6 are profiles at times t = 0.5, 2, 
0.3, and I. For comparison, Fig. 2 shows steady-state velocity profiles for q = I, k = 1.25v 
(curve I) and k = 1.75v (curve 2). 

Analysis of the solution obtained shows that the transient process of establishing ve- 
locity and temperature profiles in the channel may be periodic or aperiodic, depending on the 
relationship between the parameters Pr and k. At 16k~Pr > (0.5~)~(Pr -- I) 2 the transient 
process will be periodic (damping oscillations) while at 16k4Pr ~ (0.5~)4(Pr -- I) 2 it is 
aperiodic. Figure 3 shows the ratio u(0, t)/u(0, ~) as a function of time for parameters 
q = I, k = 0.257. Curves I-3 correspond to Pr = 0.3, i, 3. With increase inPrandtlnumber the 
maximum amplitude of the deviation of u(y, t) from u(y, ~) increases in the transient pro- 
cess, while the time required to establish a steady-state profile also increases. 

By integrating the function u(y, ~) over channel section, we obtain an expression for 
the fluid expenditure in the steady-state flow. The dependence of flow rate Q on the param- 
eter k is shown in Fig. 4 for P = 0.57 and 0.757 (curves I, 2). The functions obtained show 
that at a certain value of the parameter k the flow rate of the magnetic liquid in the chan- 
nel is at a maximum. Further increase in external magnetic field gradient (increase in k) 
leads to a decrease in flow rate. 

We will now consider steady-state oscillations of the velocity and temperature profiles 
in the channel under the action of a constant external magnetic field gradient and a pressure 
gradient which varies periodically by a law P = 2k 2 -- a exp (i~t), where a is the dimension- 
less amplitude and ~ is the dimensionless frequency. Substituting this expression for P in 
Eq. (3) and taking the transform u = U exp (i~t) and 0 = Oexp(iot), we transform Eqs. (3), (4) 
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to a system of ordinary differential equations in U = U(y) and O = O(y) 
tions 

u ( •  = 0, o ( •  = 0. 

Finally, we obtain 

with boundary condi- 

iaexp (i~t) [O Pr -- o Pr ~ -- o 2 Pr (Pr -- i) -- 8k 4 It (y, t) 4k 4 "  o 2 Pr [ 2~ 

X ch(stY)chs 1 ~176 ch(s2Y)chs 2 _]' (7) 

where ~ = V J i P r - - i ) 2 +  t6k'; s 1 V ~ ~  2 

V ~o (Pr+ t)-- i~ 
S2 ~ 2 �9 

An e x p r e s s i o n  fo r  0(y,  t) can be ob ta ined  from Eq. (3) .  J u s t  l i k e  Eq. (6 ) ,  Eq. (7) i s  v a l i d  
g iven  the  c o n d i t i o n  f0(y ,  t) l < 1. The s o l u t i o n  o b t a i n e d ,  Eq. (7) ,  i s  of complex form, and 
we will consider the real and imaginary components separately. We will note that in the par- 
ticular case 4k > -- m2pr = 0, Eq. (7) can be written in the form 

U(y, t )~  ~aexp(iot) [ ch(yV,o(Pr+t)) - - t ]  
o (Pr + t) ch (V to (er + 1)) ' 

i.e., the velocity amplitude does not become infinite. Figure 5 shows the dependence of 
steady-state velocity oscillation amplitude A on frequency ~, calculated with Eq. (7) for 
the channel section y = 0 and parameters k = 0.5~, a = I, and Pr = 0.5, I, 5, 10 (curves I-4) 
The curves show the effects of resonance. With increase in Prandtl number the resonant fre- 
quency decreases, while the oscillation amplitude increases. 

The dimensionless parameters used in the calculations correspond to physical quantities 
within the range L = 0.01-0.I m, To = 300-400~ h = 100-200 A/(m-deg), G = 104-105 A/m 2 , 
q = I0-3-I0 -2 kg/(m'sec), ~ = 0.I-I.0 W/(m.deg), c = 500-2000 J/(kg'deg). 

Couette flow of a magnetic liquid at temperatures near the Curie point can be studied 
in a similar manner. We note that one characteristic feature will then be the appearance 
of reverse flows near the nonmoving wall. 

In conclusion, we note that unique features found in magnetic liquid flow are caused 
by the temperature dependence of volume magnetization and the magnetocaloric effect. 

The author expresses his gratitude to the participants in K. B. Pavlov's scientific 
seminar for their evaluation of the study. 
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STATIONARY FLOW OF A REACTING LIQUID WHOSE PROPERTIES VARY 

WITH THE EXTENT OF REACTION 

D. A. Vaganov UDC 532.542:060.095.26 

Considerable interest attaches to the flow of a reacting liquid whose properties change 
during the reaction in relation to analysis of displacement-type flow polymerization reac- 
tors. There is a substantial increase in viscosity as the polymerization proceeds (by up 
to a factor ]0 k or more), which produces qualitative changes in the flow picture, and this 
in turn influences the macrokinetic relationships. 

Here we consider the simple case of isothermal flow of a reacting liquid in which the 
extent of reaction and the properties are uniquely determined by the reaction time. A gen- 
eral self-modeling solution is derived and the main features of the flow are examined for the 
case where there is a considerable increase in viscosity. 

I. Consider the stationary laminar flow of a reacting Newtonian liquid in a tube (tubu- 
lar flow reactor). The viscosity ~ and density p alter from the initial values ~0 and p0 at 
the inlet to the final values ~z and p~ on complete reaction. The temperature is taken as 
constant, and the reactions are independent of the velocity gradients, while the effects of 
diffusion are neglected because of the smallness of the diffusion coefficients. The extent 
of reaction and the properties of the liquid are uniquely determined by the reaction time t, 
and the relationships are considered as given. 

To deriva the flow pattern we assume that the radial velocity component arising from 
change in the flow profile on account of the change in properties is small by comparison with 
the axial component, while the pressure change along the radius is slight, and also that the 
viscosity is large enough for one to neglect inertia and the effects of the inlet hydrody- 
namic-stabilization part. With these assumptions, the flow at each section is essentially 
plane-parallel, which is an approximation widely used in various applications to the flow of 
liquids with varying properties [I-3]. The general equations of motion for a Newtonian liq- 
uid [4] in this approximation give 

t O( aV) dP 
R aR t~R-EE + - - ~ - - = 0 ,  O ~ R ~ R  o, O ~ Z ~ Z o ,  (1 .1)  

where V is the axial component of the flow velocity, R is the distance from the axis, P = 
P(Z) is the difference between the pressure at the inlet and that in a given section, Z is 
the distance from the start, and Z0 and R0 are the tube length and radius correspondingly. 
The radial velocity component W is given by the equation of continuity 

I 0 a 
R oR (oRW) + ~ (pv) = 0. ( 1 . 2 )  

The reaction time t is the time from the instant when an element of the liquid enters 
the reactor and is given by 

Z 

t = J '  e~v ' (1.3) 
o 

in which the integration is carried out along the path of motion of that element, i.e., alonga 
given  f low l i n e  ~(Z, R) = c o n s t ,  where 
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